心血管中心
首页  ->  机构设置  ->  研究机构  ->  心血管中心
研究成果

近年来获得资助的基金项目: 

项目名称

主持人

项目来源

立项时间

项目经费(万元)

肾内前列腺素E2合成对肾血流和炎症的调控及其在内毒素血症血压维持和肾损伤中的作用和机制

周应毕

国家自然科学基金面上项目

2022

52

炎症调控与心血管疾病发病机制研究创新团队

刘斌

广东省普通高校创新团队项目

2022

25

子宫来源的前列腺素D2对妊娠母体血管舒缩功能的调控及在子痫前期状态下的作用与分子机制

刘斌

国家自然科学基金面上项目

2020

55

FP受体介导的非NO依赖性血管舒张作用与PGF2a对脑动脉的调控及其在糖尿病状况下的作用和分子机制

周应毕

国家自然科学基金面上项目

2019

55

环氧化酶下游通路参与子痫前期的机制研究

刘斌

广东省自然科学基金面上项目

2019

10

TPEP3受体对肾血流的调控及其在肾缺血再灌注损伤中的作用与机制

刘斌

广东省普通高校省级重大科研项目

2018

20

EP3受体介导的内皮源性PGI2对血管功能的调控及其在高血压中的作用和机制

周应毕

国家自然科学基金面上项目

2017

60

环氧化酶下游通路对肾血流的调控及其对肾缺血再灌注损伤的影响与机制

刘斌

国家自然科学基金面上项目

2017

56

PGF2α参与肺炎衣原体感染后脑动脉内皮功能失调的分子机制

刘斌

广东省高水平大学重点学科建设项目

2015

20

花生四烯酸的环氧化代谢变异对动脉粥样硬化斑块部位血管收缩及病理进程的调控和分子机制

周应毕

国家自然科学基金               面上项目

2014

73

环氧化酶代谢通路变异对动脉粥样硬化斑块部位血管收缩性能及病理进程的调控和分子机制

周应毕

广东高校基础研究重大项目

2014

12

PPARδ参与选择性2型环氧化酶抑制剂所致心血管效应的分子机制

刘斌

汕头大学医学院

2014

5

PGF2α加重高胆固醇血症脑动脉内皮功能失调的分子机制

刘斌

广东省自然科学基金

2013

7

脑动脉内皮源性前列腺素F2ɑ对血管舒缩功能的调控及在高胆固醇血症状态下的作用和分子机制

刘斌

国家自然科学基金面上项目

2013

70

TP受体介导的前列环素的血管收缩效应与肾血流的调控及其在高血压中的作用和分子机制

周应毕

国家自然科学基金面上项目

2012

75

小鼠阻力血管内皮环氧化酶通路与高血压状态下的血管收缩功能调节

刘斌

国家自然科学基金青年基金

2010

21

血管平滑肌二型环氧化酶代谢通路与动脉粥样硬化血管收缩性能调控

周应毕

国家自然科学基金面上项目

2010

33

花生四烯酸代谢产物与炎症调控和动脉粥样硬化发病机制

周应毕

国家重点基础研究发展计划项目(计划项目)

2009

569

平滑肌细胞花生四烯酸代谢与血管疾患的病态血管反应

周应毕

广东省自然科学基金

2009

3

转基因小鼠模型与血管疾病研究

周应毕

广东省人才引进计划

2009

60

缺血预处理保护心肌缺血再灌注损伤的活性氧/活性氮机制研究

刘斌

广东省人才引进计划

2009

20

 

 

近年发表论文(*corresponding author, #co-first author:

1. Guo T#, Liu B#*, Zeng R, Lin R, Guo J, Yu G, Xu Y, Tan X, Xie K, Zhou Y*. The vasoconstrictor activities of prostaglandin D2 via the thromboxane prostanoid receptor and E prostanoid receptor-3 outweigh its concurrent vasodepressor effect mainly through D prostanoid receptor-1 ex vivo and in vivo. Eur J Pharmacol. 2023 Oct 5;956:175963.

2. Leng J#, Zhao W#, Guo J, Yu G, Zhu G, Ge J, He D, Xu Y, Chen X, Zhou Y*, Liu B*. E-prostanoid 3 receptor deficiency on myeloid cells protects against ischemic acute kidney injury via breaking the auto-amplification loop of necroinflammation. Kidney Int. 2023 Jan;103(1):100-114.

3. Zeng R#, Liu B#*, Guo T, Guo J, Yu G, Xu Y, Lin R, Tan X, Xie K, Zhou Y*. Prostaglandin F2α evokes vasoconstrictor and vasodepressor activities that are both independent of the F prostanoid receptor. FASEB J. 2022 May;36(5):e22293.

4. Liu B, Zhou Y*.  Endothelium-dependent contraction: The non-classical action of endothelial prostacyclin, its underlying mechanisms, and implications. FASEB J. 2021 Sep;35(9):e21877.

5. Zhang Y, Luo W, Li H, Yu G, Luo H, Leng J, Ge J, Zeng R, Guo T, Yin Y, Zhou Y*, Liu B* . Larger endothelium-dependent contractions in iliac arteries of adult SHRs are attributed to differential downregulation of TP and EP3 receptors in the vessels of WKYs and SHRs during the transition from adolescence to adulthood. Eur J Pharmacol. 2021 Feb 15;893:173828. 

4. Liu B, Zeng R, Guo T, Zhang Y, Leng J, Ge J, Yu G, Xu Y, , Zhou Y*. Differential properties of E prostanoid receptor-3 and thromboxane prostanoid receptor in activation by prostacyclin to evoke vasoconstrictor response in the mouse renal vasculature. FASEB J. 2020 Dec;34(12):16105-16116.

5. Cai J#, Liu B#, Guo T, Zhang Y, Wu X, Leng J, Zhu N, Guo J, Zhou Y*. Effects of thromboxane prostanoid receptor deficiency on diabetic nephropathy induced by high fat diet and streptozotocin in mice. Eur J Pharmacol. 2020 Sep 5;882:173254.

6. Liu B, Wu X, Zeng R, Yin Y, Guo T, Xu Y, Zhang Y, Leng J, Ge J, Yu G, Guo J, Zhou Y*. Prostaglandin E2 sequentially activates E-prostanoid receptor-3 and thromboxane prostanoid receptor to evoke contraction and increase in resistance of the mouse renal vasculature. FASEB J. 2020 Feb;34(2):2568-2578.

7. Hu C#, Liu B*#, Xu Y, Wu X, Guo T, Zhang Y, Leng J, Ge J, Yu G, Guo J, Zhou Y*. EP3 Blockade Adds to the Effect of TP Deficiency in Alleviating Endothelial Dysfunction in Atherosclerotic Mouse Aortas. Front Physiol. 2019Sep26;10:1247.                     

8. Jian-Ye Li , Jun Huang , Shi-Jin Zhang , Chunna Yao , Wen-Wu Sun* , Bin Liu* , Yingbi Zhou* ,Bin Wu*. Synthesis of diaryl sulfides through CAH bond functionalization of arylamides with cobalt salt and elemental sulfur. Tetrahedron Letters. Volume 60, Issue 13,28 March 2019, Pages 895-899

9. Liu B*#, Li J#, Yan H, Tian D, Li H, Zhang Y, Guo T, Wu X, Luo W, Zhou Y*. TP and/or EP3 receptors mediate the vasoconstrictor and pressor responses of prostaglandin F2α in mice and/or humans. FASEB J. 2019 Feb;33(2):2451-2459.

10. Hu C#, Liu B*#, Li H, Wu X, Guo T, Luo W, Zhou Y*. Prostaglandin D2 evokes potent uterine contraction via the F prostanoid receptor in postpartum rats. Eur J Pharmacol. 2018 Oct 5;836:11-17.

11. Liu B#, Yang J#, Luo W, Zhang Y, Li J, Li H, Chen L, Zhou Y*. Prostaglandin D2 is the major cyclooxygenase-1-derived product in prepartum mouse uteri where it mediates an enhanced in vitro myometrial contraction. Eur J Pharmacol 2017, 813:140–146    

12. Liu B, Zhan M, Zhang Y, Li H, Wu X, Zhuang F, Luo W, Zhou Y*. Increased role of E prostanoid receptor-3 in prostacyclin-evoked contractile activity of spontaneously hypertensive rat mesenteric resistance arteries. Sci Rep 2017, 7:8927   

13. Li Z#, Zhang Y#, Liu B#, Luo W, Li H, Zhou Y*. Role of E-type prostaglandin receptor EP3 in the vasoconstrictor activity evoked by prostacyclin in thromboxane-prostanoid receptor deficient mice. Sci Rep 2017, 7:42167    

14. Xu D, Sun WW, Xie Y, Liu JK*, Liu B*, Zhou Y*, Wu B*. Metal-Free Regioselective Hypervalent Iodine-Mediated C-2 and C-3 Difunctionalization of N-Substituted Indoles. J Org Chem 2016, 81(22):11081-11094    

15. Xie Y, Xu D, Sun W, Zhang S, Dong X, Liu B*, Zhou Y*, Wu B*. Cobalt Catalyzed Oxidative Dimerization of 2-Phenylpyridine Derivatives. Asian J Org Chem 2016, 5: 961-965    

16. Luo W, Liu B, Zhou Y*. The endothelial cyclooxygenase pathway: Insights from mouse arteries. Eur J Pharmacol. 2016 Jun 5;780:148-58.

17. Li S#, Liu B#, Luo W, Zhang Y, Li H, Huang D, Zhou Y*. Role of cyclooxygenae-1 and -2 in endothelium-dependent contraction of atherosclerotic mouse abdominal aortas. Clin Exp Pharmacol P 2016, 43(1):67-74    

18. Liu D#, Liu B#, Luo W, Li H, Zhang Y, Zhou Y*. A vasoconstrictor response to COX-1-mediated prostacyclin synthesis in young rat renal arteries that increases in pre-hypertensive conditions. Am J Physiol-Heart C 2015, 309(5):H804-H811    

19. Liu B#, Li Z#, Zhang Y, Luo W, Zhang J, Li H, Zhou Y*. Vasomotor reaction to cyclooxygenase-1-mediated prostacyclin synthesis in carotid arteries from two-kidney-one-clip hypertensive mice. PLoS One 2015, 10(8):e0136738    

20. Zhu N#, Liu B#, Luo W, Zhang Y, Li H, Li S, Zhou Y*. Vasoconstrictor role of cyclooxygenase-1-mediated prostacyclin synthesis in non-insulin-dependent diabetic mice induced by high-fat diet and streptozotocin. Am J Physiol-Heart C 2014, 307(3):H319-H327    

21. Liu B and Zhou Y*. Emerging challenges to the existing paradigm of cyclo-oxygenase pathways in regulating vascular function. Exp Physiol 2014, 99(1):1-2

22. Liu B#, Zhang Y#, Zhu N, Li H, Luo W, Zhou Y*.  A vasoconstrictor role for cyclooxygenase-1-mediated prostacyclin synthesis in mouse renal arteries. Am J Physiol-Renal 2013, 305(9):F1315-1322    

23. Zhou Y, Luo W, Zhang Y, Li H, Huang D, Liu B*. Cyclo-oxygenase-1 or -2-mediated metabolism of arachidonic acid in endothelium-dependent contraction of mouse arteries. Exp Physiol 2013, 98(7):1225-1234   

24. Liu B, Luo W, Zhang Y, Li H, Huang D, Zhou Y. Effect of celecoxib on cyclooxygenase-1-mediated prostacyclin synthesis and endothelium-dependent contraction in mouse arteries. Eur J Pharmacol 2013, 698(1-3):354-361   

25. Liu B#, Zhang Y#, Zhu N, Li H, Luo W, Zhou Y*. A vasoconstrictor role for cyclooxygenase-1-mediated prostacyclin synthesis in mouse renal arteries. Am J Physiol Renal Physiol. 2013 Nov;305(9):F1315-22.

26. Liu B, Luo W, Zhang Y, Li H, Zhu N, Huang D, Zhou Y*. Involvement of Cyclooxygenase-1 Mediated Prostacyclin Synthesis in the Vasoconstrictor Activity Evoked by ACh in Mouse Arteries. Exp Physiol. 2012;97:277-289

27. Liu B, Luo W, Zhang Y, Li H, Zhu N, Huang D, Zhou Y*. Role of cyclooxygenase-1-mediated prostacyclin synthesis in endothelium-dependent vasoconstrictor activity of porcine interlobular renal arteries.AmJ Physiol Renal Physiol. 2012,302(9):F1133- 40.

28. Liu B, Luo W, Zhang Y, Li H, Zhang J, Tan XR, Zhou Y*. Concomitant activation of functionally opposing prostacyclin and thromboxane prostanoid receptors by cyclo-oxygenase-1-mediated prostacyclin synthesis in mouse arteries. Exp Physiol. 2012 Jul;97(7):895-904.

29. Song YG#, Liu B#, Liu YP, Du LB, Villamena FA Liu Y. Biphasic regulation of superoxide radical levels in Mn-depleted and photoactivated photosystem II. Photosynthetica 2011, 49(3):353-360

30. Liu B, Zhu X, Chen CL, Hu K, Swartz HM, Chen YR, He G. Opening of the mitoK(ATP) channel and decoupling of mitochondrial complex II and III contribute to the suppression of myocardial reperfusion hyperoxygenation. Mol. Cell. Biochem 2010, 337(1-2):25-38

31. Liu B, Tewari AK, Zhang L, Green-Church KB, Zweier JL, Chen YR, He G. Proteomic analysis of protein tyrosine nitration after ischemia reperfusion injury: Mitochondria as the major target. Biochim. Biophys. Acta-Proteins Proteom 2009, 1794(3):476-485

32. Chi M#, Zhou Y#, Vedamoorthyrao S, Babu G, & Periasamy M. Ablation of smooth muscle myosin heavy chain SM2 increases smooth muscle contractility and results in postnatal death in mice. Proc Natl Sci USA 2008, 105(47):18614-8.

33. Zhou Y*, Mitra S, Varadharaj S, Parinandi N, Zweier JL, Flavahan NA, IncreasedExpression of Cyclooxygenase-2 Mediates Enhanced Contraction to Endothelin ETA Receptors in eNOS Knockout Mice. Circ Res 2006, 98(11): 1439-45.